Click on the hypotesis function graph (below) to add features. At least 2 features are required to start animation. Gradient Descent on Wiki.
x = [300 ; 500 ; 700]; y = x * 1.75 + 10; predict = 800; mu = mean(x); x = x - mu; sigma = std(x); x = x ./ sigma; m = length(y); x = [ones(m, 1), x]; a = 0.01; t = [0;0]; err = zeros(1, 2000); for i=1:length(err), df = (x * t - y); err(i) = (df' * df) / 2 / m; vec = (x' * df) / m; t = (t - (vec * a)); endfor printf( "theta0: %f theta1: %f\n",t(1),t(2)); prediction = predict - mu; prediction = prediction / sigma; printf( "Prediction(800): %f\n",prediction * t(2) + t(1));gradient-descent.m