Click on the hypotesis function graph (below) to add features. At least 2 features are required to start animation. Gradient Descent on Wiki.
x = [300 ; 500 ; 700];
y = x * 1.75 + 10;
predict = 800;
mu = mean(x);
x = x - mu;
sigma = std(x);
x = x ./ sigma;
m = length(y);
x = [ones(m, 1), x];
a = 0.01;
t = [0;0];
err = zeros(1, 2000);
for i=1:length(err),
df = (x * t - y);
err(i) = (df' * df) / 2 / m;
vec = (x' * df) / m;
t = (t - (vec * a));
endfor
printf( "theta0: %f theta1: %f\n",t(1),t(2));
prediction = predict - mu;
prediction = prediction / sigma;
printf( "Prediction(800): %f\n",prediction * t(2) + t(1));
gradient-descent.m